Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage

· ·
· Elsevier
Ebook
526
Pages
Eligible

About this ebook

Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage offers a better understanding of mycorrhizal mediation that will help inform earth system models and subsequently improve the accuracy of global carbon model predictions. Mycorrhizas transport tremendous quantities of plant-derived carbon below ground and are increasingly recognized for their importance in the creation, structure, and function of soils. Different global carbon models vary widely in their predictions of the dynamics of the terrestrial carbon pool, ranging from a large sink to a large source.

This edited book presents a unique synthesis of the influence of environmental change on mycorrhizas across a wide range of ecosystems, as well as a clear examination of new discoveries and challenges for the future, to inform land management practices that preserve or increase below ground carbon storage.

  • Synthesizes the abundance of research on the influence of environmental change on mycorrhizas across a wide range of ecosystems from a variety of leading international researchers
  • Focuses on the specific role of mycorrhizal fungi in soil processes, with an emphasis on soil development and carbon storage, including coverage of cutting-edge methods and perspectives
  • Includes a chapter in each section on future avenues for further study

About the author

Nancy Collins Johnson has been a professor of soil ecology at Northern Arizona University since 1997. She earned a PhD in Ecology and Plant Pathology from the University of Minnesota (with David Tilman) and a MS degree in Botany from the University of Wisconsin. Johnson and her students study interactions among communities of plants and soil organisms in natural and human managed ecosystems throughout the world. They have discovered that mycorrhizas and soil communities are sensitive to global change factors and they are seeking first principles to understand these responses. These studies are important because mycorrhizal symbioses influence plant community composition, soil stability, and belowground carbon storage.

Professor Catherine Gehring works in the department of Biological Sciences and Merriam-Powell Center for Environmental Research at Northern Arizona University The Gehring Lab conducts research to understand the functioning of fungi in natural and managed systems. Of particular interest is how abiotic and biotic factors interact to affect the abundance and community composition of plant-associated fungi and how changes in these parameters then feedback to affect the performance of host plants. Current projects explore the influence of host plant genetics on fungal abundance and diversity; the impact of climate change on interactions among host plants, fungi, and insects; and the belowground mechanisms by which invasive plants may harm native plants.

Jan Jansa studied biology at Charles University in Prague and agricultural sciences at ETH Zurich, where he also obtained PhD in 2002. He also worked at ETH Zurich and the University of Adelaide (with Sally E. Smith). Jansa currently leads the Laboratory of Fungal Biology at the Institute of Microbiology in Prague. His aim is the quantification of the involvement of mycorrhizal symbiosis in the turnover of soil organic matter, fluxes of mineral nutrients such as phosphorus and nitrogen from the soil to plants and carbon from the plants to the soil. Together with his team, he studies the exchange of mineral nutrients for carbon between the symbiotic partners under spatially and temporarily variable conditions, including light deprivation, using a suite of isotopic and molecular techniques

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.